Fast Neural Network Language Model Lookups at N-Gram Speeds

نویسندگان

  • Yinghui Huang
  • Abhinav Sethy
  • Bhuvana Ramabhadran
چکیده

Feed forward Neural Network Language Models (NNLM) have shown consistent gains over backoff word n-gram models in a variety of tasks. However, backoff n-gram models still remain dominant in applications with real time decoding requirements as word probabilities can be computed orders of magnitude faster than the NNLM. In this paper, we present a combination of techniques that allows us to speed up the probability computation from a neural net language model to make it comparable to the word n-gram model without any approximations. We present results on state of the art systems for Broadcast news transcription and conversational speech which demonstrate the speed improvements in real time factor and probability computation while retaining the WER gains from NNLM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirically combining unnormalized NNLM and back-off N-gram for fast N-best rescoring in speech recognition

Neural network language models (NNLM) have been proved to be quite powerful for sequence modeling, including feed-forward NNLM (FNNLM), recurrent NNLM (RNNLM), etc. One main issue concerned for NNLM is the heavy computational burden of the output layer, where the output needs to be probabilistically normalized and the normalizing factors require lots of computation. How to fast rescore the N-be...

متن کامل

1-761 Language and Statistics Final Project Recurrent Neural Network and High-order N-gram Models for Pos Prediction 1. Recurrent Neural Network

The task of part-of-speech (POS) language modeling typically includes a very small vocabulary, which significantly differs from traditional lexicalized language modeling tasks. In this project, we propose a high-order n-gram model and a stateof-the-art recurrent neural network model, which aims at minimizing the variance in this POS language modeling task. In our experiments, we show that the r...

متن کامل

Program Synthesis for Character Level Language Modeling

We propose a statistical model applicable to character level language modeling and show that it is a good fit for both, program source code and English text. The model is parameterized by a program from a domain-specific language (DSL) that allows expressing non-trivial data dependencies. Learning is done in two phases: (i) we synthesize a program from the DSL, essentially learning a good repre...

متن کامل

Subword Language Modeling with Neural Networks

We explore the performance of several types of language models on the word-level and the character-level language modeling tasks. This includes two recently proposed recurrent neural network architectures, a feedforward neural network model, a maximum entropy model and the usual smoothed n-gram models. We then propose a simple technique for learning sub-word level units from the data, and show ...

متن کامل

Artificial neural network to predict the health risk caused by whole body vibration of mining trucks

Drivers of mining trucks are exposed to whole-body vibrations (WBV) and shocks during the various working cycles. These exposures have an adversely influence on the health, c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017